首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29048篇
  免费   452篇
  国内免费   944篇
测绘学   1549篇
大气科学   2326篇
地球物理   6309篇
地质学   13092篇
海洋学   1347篇
天文学   2219篇
综合类   2175篇
自然地理   1427篇
  2022年   50篇
  2021年   106篇
  2020年   113篇
  2019年   80篇
  2018年   4897篇
  2017年   4184篇
  2016年   2857篇
  2015年   481篇
  2014年   373篇
  2013年   389篇
  2012年   1263篇
  2011年   2933篇
  2010年   2209篇
  2009年   2498篇
  2008年   2080篇
  2007年   2486篇
  2006年   216篇
  2005年   310篇
  2004年   533篇
  2003年   516篇
  2002年   328篇
  2001年   139篇
  2000年   106篇
  1999年   69篇
  1998年   101篇
  1997年   59篇
  1996年   43篇
  1995年   40篇
  1994年   44篇
  1993年   38篇
  1992年   43篇
  1991年   41篇
  1990年   51篇
  1989年   36篇
  1988年   25篇
  1987年   30篇
  1986年   32篇
  1984年   32篇
  1983年   29篇
  1982年   30篇
  1981年   48篇
  1980年   44篇
  1979年   26篇
  1978年   26篇
  1977年   25篇
  1976年   31篇
  1974年   25篇
  1973年   30篇
  1972年   24篇
  1971年   37篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
Based on performance-based seismic engineering, this paper proposes an optimal seismic retrofit model for steel moment resisting frames (SMRFs) to generate a retrofit scheme at minimal cost. To satisfy the acceptance criteria for the Basic Safety Objective (BSO) specified in FEMA 356, the minimum number of upgraded connections and their locations in an SMRF with brittle connections are determined by evolutionary computation. The performance of the proposed optimal retrofitting model is evaluated on the basis of the energy dissipation capacities, peak roof drift ratios, and maximum interstory drift ratios of structures before and after retrofitting. In addition, a retrofit efficiency index, which is defined as the ratio of the increment in seismic performance to the required retrofitting cost, is proposed to examine the efficiencies of the retrofit schemes derived from the model. The optimal seismic retrofit model is applied to the SAC benchmark examples for threestory and nine-story SMRFs with brittle connections. Using the retrofit efficiency index proposed in this study, the optimal retrofit schemes obtained from the model are found to be efficient for both examples in terms of energy dissipation capacity, roof drift ratio, and maximum inter-story drift ratio.  相似文献   
42.
Preliminary design of offshore wind turbines requires high precision simplified methods for the analysis of the system fundamental frequency. Based on the Rayleigh method and Lagrange's Equation, this study establishes a simple formula for the analysis of system fundamental frequency in the preliminary design of an offshore wind turbine with a monopile foundation. This method takes into consideration the variation of cross-section geometry of the wind turbine tower along its length, with the inertia moment and distributed mass both changing with diameter. Also the rotational flexibility of the monopile foundation is mainly considered. The rigid pile and elastic middle long pile are calculated separately. The method is validated against both FEM analysis cases and field measurements, showing good agreement. The method is then used in a parametric study, showing that the tower length Lt, tower base diameter d0, tower wall thickness δt, pile diameter db and pile length Lb are the major factors influencing the fundamental frequency of the offshore wind turbine system. In the design of offshore wind turbine systems, these five parameters should be adjusted comprehensively. The seabed soil condition also needs to be carefully considered for soft clay and loose sand.  相似文献   
43.
In the field of seismic exploration, ground roll seriously affects the deep effective reflections from subsurface deep structures. Traditional curvelet transform cannot provide an adaptive basis function to achieve a suboptimal denoised result. In this paper, we propose a method based on empirical curvelet transform (ECT) for ground roll attenuation. Unlike the traditional curvelet transform, this method not only decomposes seismic data into multiscale and multi-directional components, but also provides an adaptive filter bank according to frequency content of seismic data itself. So, ground roll can be separated by using this method. However, as the frequency of reflection and ground roll components are close, we apply singular value decomposition (SVD) in the curvelet domain to differentiate the ground roll and reflection better. Examples of synthetic and field seismic data reveal that the proposed method based ECT performs better than the traditional curvelet method in terms of the suppression of ground roll.  相似文献   
44.
Anisotropy correction is necessary during the processing of converted PSwave seismic data to achieve accurate structural imaging, reservoir prediction, and fracture detection. To effectively eliminate the adverse effects of S-wave splitting and to improve PSwave imaging quality, we tested methods for pre-stack migration imaging and anisotropic correction of PS-wave data. We based this on the propagation rules of seismic waves in a horizontal transverse isotropy medium, which is a fractured medium model that reflects likely subsurface conditions in the field. We used the radial (R) and transverse (T) components of PS-wave data to separate the fast and slow S-wave components, after which their propagation moveout was effectively extracted. Meanwhile, corrections for the energies and propagation moveouts of the R and T components were implemented using mathematical rotation. The PS-wave imaging quality was distinctly improved, and we demonstrated the reliability of our methods through numerical simulations. Applying our methods to three-dimensional and three-component seismic field data from the Xinchang-Hexingchang region of the Western Sichuan Depression in China, we obtained high-quality seismic imaging with continuous reflection wave groups, distinct structural features, and specific stratigraphic contact relationships. This study provides an effective and reliable approach for data processing that will improve the exploration of complex, hidden lithologic gas reservoirs.  相似文献   
45.
The Haicheng earthquake (Ms 7.3) occurred in Liaoning Province (39°N–43°N, 120°E–126°E ), China on February 4, 1975. The mortality rate was only 0.02% owing to the first timely and accurate prediction, although the area affected by the earthquake was 9200 km2 and covered cities with a population density of 1000 p/km2. In this study, the doubledifference (DD) tomography method was used to obtain high-resolution three-dimensional (3D) P- and S-wave velocity (Vp and Vs) structures and Vp/Vs as well as the earthquake locations. Tomography results suggest that velocity structure at shallow depth coincides well with topography and sediment thickness. The earthquake locations form a northwest-striking zone associated with the Jinzhou(JZ) Fault and a northeast-striking zone associated with the Haichenghe-Dayanghe (HD) Fault, and suggest that the JZ Fault consists of three faults and the Ms 7.3 Haicheng earthquake originated at the intersection of the JZ and the Faults. Lowvelocity zones (LVZs) with low Vp/Vs are observed at 15–20 km depth beneath the Haicheng (HC) region. We interpret the LVZs in the middle crust as regions of fluids, suggesting rock dehydration at high temperatures. The LVZs and low Vp/Vs in the upper crust are attributed to groundwater-filled cracks and pores. We believe that large crustal earthquakes in this area are caused by the combination of faulting and fluid movement in the middle crust.  相似文献   
46.
In this paper, we propose a hybrid PML (H-PML) combining the normal absorption factor of convolutional PML (C-PML) with tangential absorption factor of Mutiaxial PML (M-PML). The H-PML boundary conditions can better suppress the numerical instability in some extreme models. and the computational speed of finite-element method and the dynamic range are greatly increased using this HPML. We use the finiteelement method with a hybrid PML to model the acoustic reflection of the interface when wireline and well logging while drilling (LWD), in a formation with a reflector outside the borehole. The simulation results suggests that the PS- and SP- reflected waves arrive at the same time when the inclination between the well and the outer interface is zero, and the difference in arrival times increases with increasing dip angle. When there are fractures outside the well, the reflection signal is clearer in the subsequent reflection waves and may be used to identify the fractured zone. The difference between the dominant wavelength and the model scale shows that LWD reflection logging data are of higher resolution and quality than wireline acoustic reflection logging.  相似文献   
47.
Common prestack fracture prediction methods cannot clearly distinguish multiplescale fractures. In this study, we propose a prediction method for macro- and mesoscale fractures based on fracture density distribution in reservoirs. First, we detect the macroscale fractures (larger than 1/4 wavelength) using the multidirectional coherence technique that is based on the curvelet transform and the mesoscale fractures (1/4–1/100 wavelength) using the seismic azimuthal anisotropy technique and prestack attenuation attributes, e.g., frequency attenuation gradient. Then, we combine the obtained fracture density distributions into a map and evaluate the variably scaled fractures. Application of the method to a seismic physical model of a fractured reservoir shows that the method overcomes the problem of discontinuous fracture density distribution generated by the prestack seismic azimuthal anisotropy method, distinguishes the fracture scales, and identifies the fractured zones accurately.  相似文献   
48.
Rock brittleness directly affects reservoir fracturing and its evaluation is essential for establishing fracturing conditions prior to reservoir reforming. Dynamic and static brittleness data were collected from siltstones of the Qingshankou Formation in Songliao Basin. The brittle–plastic transition was investigated based on the stress–strain relation. The results suggest that the brittleness indices calculated by static elastic parameters are negatively correlated with the stress drop coefficient and the brittleness index B2, defined as the average of the normalized Young’s modulus and Poisson’s ratio, is strongly correlated with the stress drop. The brittleness index B2, Young’s modulus, and Poisson’s ratio correlate with the brittle minerals content; that is, quartz, carbonates, and pyrite. We also investigated the correlation between pore fluid and porosity and dynamic brittle characteristic based on index B2. Pore fluid increases the plasticity of rock and reduces brittleness; moreover, with increasing porosity, rock brittleness decreases. The gas-saturated siltstone brittleness index is higher than that in oil- or water-saturated siltstone; the difference in the brittleness indices of oil- and water-saturated siltstone is very small. By comparing the rock mechanics and ultrasonic experiments, we find that the brittleness index obtained from the rock mechanics experiments is smaller than that obtained from the ultrasonic experiments; nevertheless, both decrease with increasing porosity as well as their differences. Ultrasonic waves propagate through the rock specimens without affecting them, whereas rock mechanics experiments are destructive and induce microcracking and porosity increases; consequently, the brittleness of low-porosity rocks is affected by the formation of internal microcrack systems.  相似文献   
49.
Rodríguez  Oriol  Bech  Joan 《Natural Hazards》2020,104(1):1021-1038
Natural Hazards - High-resolution aerial imagery may provide very detailed information about strong-convective wind events, which can be very useful to enhance and make more robust severe weather...  相似文献   
50.
Authigenic clays are an important control on reservoir quality in lacustrine carbonates but remain challenging to predict. Lacustrine depositional systems respond to climatic variations in rainfall, surface runoff and groundwater input, and evaporation, and result in rapid and frequent changes in lake volume; this is expressed through changing water depth and shoreline position. In the upper portion of the Early Palaeocene Yacoraite Formation of the Salta Basin in Argentina, extensive lacustrine deposits were deposited during the sag phase of rifting. Prior high-resolution stratigraphic studies have suggested that climatic factors control microbial carbonate sequences within a ‘balanced fill’ lake, with variation in the lake level having a major influence on facies association changes. This study characterizes the evolution of facies and mineralogy within the Yacoraite Formation, focusing on the distribution of clay minerals, making a link between the high, medium and low-frequency sequence stratigraphic cycles. The low-frequency transgressive hemicycle of the upper portion of the Yacoraite Formation is comprised of abundant siliciclastic facies, suggesting a wetter period. Microbialites occurring in this interval are coarse-grained and agglutinated. Detrital clay minerals such as illite and chlorite and associated siliciclastic sediments were input to the lake during high-frequency transgressive periods. During high-frequency regressive hemicycles, sedimentation was dominated by carbonate facies with Ca-rich dolomite and the authigenic clays are comprised of chlorite/smectite mixed-layers. By contrast, the low frequency regressive hemicycle records fine-grained agglutinated microbialite with horizons of fibrous calcite, more stoichiometric dolomite, barite and authigenic magnesian smectite. This indicates elevated ion concentrations in the lake under intense evaporation during an arid period. Understanding the conditions that are favourable for formation and preservation of authigenic clays within the lacustrine environment can improve understanding of reservoir quality in comparable economically important deposits.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号